Activation of Na+-permeant Cation Channel by Stretch and Cyclic AMP-dependent Phosphorylation in Renal Epithelial A6 Cells

نویسندگان

  • Yoshinori Marunaka
  • Yutaka Shintani
  • Gregory P. Downey
  • Naomi Niisato
چکیده

It is currently believed that a nonselective cation (NSC) channel, which responds to arginine vasotocin (an antidiuretic hormone) and stretch, regulates Na+ absorption in the distal nephron. However, the mechanisms of regulation of this channel remain incompletely characterized. To study the mechanisms of regulation of this channel, we used renal epithelial cells (A6) cultured on permeable supports. The apical membrane of confluent monolayers of A6 cells expressed a 29-pS channel, which was activated by stretch or by 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterase. This channel had an identical selectivity for Na+, K+, Li+, and Cs+, but little selectivity for Ca2+ (PCa/PNa < 0.005) or Cl- (PCl/PNa < 0.01), identifying it as an NSC channel. Stretch had no additional effects on the open probability (Po) of the IBMX-activated channel. This channel had one open ("O") and two closed (short "CS" and long "CL") states under basal, stretch-, or IBMX-stimulated conditions. Both stretch and IBMX increased the Po of the channel without any detectable changes in the mean open or closed times. These observations led us to the conclusion that a kinetic model "CL <--> CS <--> O" was the most suitable among three possible linear models. According to this model, IBMX or stretch would decrease the leaving rate of the channel for CL from CS, resulting in an increase in Po. Cytochalasin D pretreatment abolished the response to stretch or IBMX without altering the basal activity. H89 (an inhibitor of cAMP-dependent protein kinase) completely abolished the response to both stretch and IBMX, but, unlike cytochalasin D, also diminished the basal activity. We conclude that: (a) the functional properties of the cAMP-activated NSC channel are similar to those of the stretch-activated one, (b) the actin cytoskeleton plays a crucial role in the activation of the NSC channel induced by stretch and cAMP, and (c) the basal activity of the NSC channel is maintained by PKA-dependent phosphorylation but is not dependent on actin microfilaments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidylinositol 3,4,5-trisphosphate: an early mediator of insulin-stimulated sodium transport in A6 cells.

Insulin stimulates sodium transport across A6 epithelial cell monolayers. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was suggested as an early step in the insulin-stimulated sodium reabsorption (Ref. 35). To establish that the stimulation of the PI 3-kinase signaling cascade is causing stimulation of apical epithelial Na channel, we added permeant forms of phosphatidylinositol (P...

متن کامل

ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells.

The mechanosensitivity of the epithelial sodium channel (ENaC) is controversial. Using cell-attached patch-clamp techniques, we found that mechanical stretch stimulated ENaC in A6 distal nephron cells in only three of nine cell-attached patches. However, stretch consistently activated ENaC after apical ATP was scavenged with apical hexokinase plus glucose or after P(2) receptors in the patch we...

متن کامل

Fulvene-5 inhibition of Nadph oxidases attenuates activation of epithelial sodium channels in A6 distal nephron cells.

Nadph oxidase 4 is an important cellular source of reactive oxygen species (ROS) generation in the kidney. Novel antioxidant drugs, such as Nox4 inhibitor compounds, are being developed. There is, however, very little experimental evidence for the biological role and regulation of Nadph oxidase isoforms in the kidney. Herein, we show that Fulvene-5 is an effective inhibitor of Nox-generated ROS...

متن کامل

(Dys)regulation of epithelial chloride channels.

Chloride (Cl)-conducting channel proteins in plasma and intracellular membranes subserve a diversity of cellular functions, including neurotransmission, osmoregulation, pH regulation in organelles, acid secretion by parietal cells in the stomach, and salt absorption or secretion in exocrine glands (pancreas, sweat gland) and transport epithelia (trachea, intestine). With the notable exception o...

متن کامل

Polarization of adenosine effects on intracellular pH in A6 renal epithelial cells.

The effect of adenosine on Na+/H+ exchange activity was examined in cultured A6 renal epithelial cells. Adenosine and its analogue N6-cyclopentyladenosine (CPA) had different effects on Na+/H+ exchange activity depending on the side of addition. Basolateral CPA induced a stimulation of Na+/H+ exchange activity that was completely prevented by preincubation with an A2A-selective antagonist, 8-(3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1997